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Random generators
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Ingredients
Objectives
Randomness

Study of a system performances

Investigation tools :

Mathematical/numerical analysis of models

Simulation of the system (math model, scale model)

Experiments/measures on real system
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Simulation

Simulation

Imitation of a real system, based on a model of the reality which
picks some key features of the structure and the dynamics of the
system

Numerical/computer/in silico simulation

Experiments where the real system is replaced by a computer
program implementing a mathematical model of the system.
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Discrete event simulation

Ingredients
Objectives
Randomness

Ingredients of simulation

Models : deterministic or not, probabilistic or not, states and
time discrete or continuous, various speci�cation languages.

Software : many softwares commercial or not, various
programming languages.

Hardware : from general monoprocessor to high performance
computing with super-computers or clusters.

M1IF - ENS Lyon Performance Evaluation & Networks 4/41



Simulation
Random generators

Discrete event simulation

Ingredients
Objectives
Randomness

Advantages of simulation

In the framework of performance evaluation :

Good alternative to study systems complex to observe or
analyse.

Often cheaper than experiments on real systems.

Possibility to accelerate time : simulation time vs real time.

Experimentation under control, possibility to play easily with
model parameters
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Risks of simulation

In the framework of performance evaluation :

Bugs in the simulator.

Bugs in the model

Errors/di�culties to interpret the results of simulation

Relevance of results sometimes guaranteed by theorems : e.g. a.s.
convergence of empirical means towards parameters of the
asymptotic behavior
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De�nition
Utilisation
Conception

Random Number Generators

Question : how to generate numbers (boolean, integers, rationals,
reals) following �xed laws and using a �xed source of randomness ?

Postulate (random generator)

We have a function Random with values in [0,1] such that

1 One call to Random returns a r.v. of uniform law over [0,1].

2 Successive calls to Random return independent r.v.

Remark : Random can take any value in [0,1] but ∀a ∈ [0,1],
P[Random= a]= 0. May seem di�cult to achieve in practice, but
ways to approach this.
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Simulate a probability law via Random

De�nition

An algo simulates a proba law when one of the variables outputs
follow this law, assuming that the successive calls to the random
generator are a sequence of i.i.d. r.v. of uniform law over [0,1].

Proposition (Simulation of the uniform law over [0,1]d )

For all d ∈N∗, let (Rand1, . . . ,Randd) d be the successive calls to
Random, then for any box D =]a1,b1]×·· ·×]ad ,bd ], 0≤ ai < bi ≤ 1,
i = 1, . . . ,d , we have :

P[(Rand1, . . . ,Randd) ∈D]= (b1−a1) · · ·(bd −ad )
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Randomness at �rst sight

Question for 500 pts : which one is i.i.d. uniform in [0,1]2 ?

atmospheric noise (u2n ,u2n+1) with un = xn/2
31,

xn+1 =65539xn mod 231, x0 =131

(u2n ,u2n+1) with un = xn/250,

xn+1 =17xn +1 mod 250, x0 =1

M1IF - ENS Lyon Performance Evaluation & Networks 9/41



Simulation
Random generators

Discrete event simulation

De�nition
Utilisation
Conception

Randomness at �rst sight

Question for 500 pts : which one is i.i.d. uniform in [0,1]2 ?

atmospheric noise (u2n ,u2n+1) with un = xn/2
31,

xn+1 =65539xn mod 231, x0 =131

(u2n ,u2n+1) with un = xn/250,

xn+1 =17xn +1 mod 250, x0 =1

M1IF - ENS Lyon Performance Evaluation & Networks 9/41



Simulation
Random generators

Discrete event simulation

De�nition
Utilisation
Conception

First examples

Vocabulary : simuler une loi / échantillonner selon une loi /
random sampling

Example 1 : uniform law over [a,b], a,b ∈R.

X ← (b−a)×Random+a

Example 2 : non biaised dice with 6 faces.

X ←d6×Randome
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Sampling by inversion (I)

De�nition (pseudo-inverse of F )

∀u ∈R,F (−1)(u) def= inf{x ∈R|F (x)≥ u} (=F−1(u) if F cont strict↗).

Proposition

Let X real r.v. with cumulative distribution F and U of uniform law
over [0,1], then X̃ =F (−1)(U) follows the law of X .

Algorithm (sampling by inversion)

X ← F (−1)(Random)

Use : useful when one has an explicit expression and/or a simple
computation of F (−1).
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Ni Luh Dewi Sintiari
sampling by inversion is for non-decreasing function

Ni Luh Dewi Sintiari
For sampling by inversion, the easiest way to work on the proof is if we assume that F is contiuous. But in general we should not make this assumption. Maybe assumption of right continuous is enough?
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Sampling by inversion (II)

Exemple 1 : simulate the law exp F (x)= (1−e−λx)1R+(x)

Formula : ∀u ∈]0,1], F−1(u)=− ln(1−u)/λ
Algo : X ←− ln(Random)/λ (not necessary to compute
− ln(1−Random)/λ since Random and 1−Random have the same
law)

Exemple 2 : simulate a discrete law with values in
{x1 < x2 < x3 < . . .} a �nite or countable sets.

Formulas : ∀x ∈R, F (x)=
{
0 si x < xi

p1+·· ·+pi si xi ≤ x < xi+1
∀u ∈]0,1], F−1(u)= {xi |Fi−1 < u ≤Fi } où Fi = p1+·· ·+pi
Algo :

i ← 1, choix ← Random,
repeat (choix >Fi ) until i ← i +1,
X ← xi
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Sampling by inversion (III)

Example 2bis : Poisson law of parameter λ
Algo :

P ← e−λ, F ←P , X ← 0, choix ← Random,
while (choix >F ) do { X ←X +1, P ←λP/X , F ← F +P }

Exemple 2ter : Discrete law over n values

Algo :
precompute Fi , 1≤ i ≤ n in a sorted array,
�nd index i such that Fi−1 < Random≤Fi by dichotomy

space precomputation time sampling time calls to Random

O(1) 0 O(n) 1

O(n) O(n) O(log(n)) 1

O(?) O(?) O(1) 1
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Ni Luh Dewi Sintiari
- In the first method, we compute Fi one by one, so we don't need to store anything
- In the second, we compte Fi for all i's, but we need O(n) space to store. For the sampling, we can use binary search that need O(log n)
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Sampling by conditional rejection (I)

Ingredients :

Algo A probabilistic (with calls to Random) where output
variable X = v.a. Ω→R.

Event F ⊆Ω of probability P(F )> 0.

Algo Ã : repeat A until F occurs/realized.

Proposition

1 When Ã stop, X̃ the output variable of A follows the law of
X conditioned by F , i.e. with cumulative distribution
P(X ≤ x |F )=P({X ≤ x}∩F )/P(F ).

2 Number of loop executions in Ã follows a geometrical law of
parameter P(F ).
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Sampling by conditional rejection (II)

Example1 : let α ∈]0,1[, repeat X ← Random until X ≤α.

FX̃ (x)=P(X ≤ x |X ≤α)=


0 si x < 0

x/α si x ∈ [0,α]

1 si x >α
Densité fX̃ (x)= 1

α1[0,α](x) càd uniforme sur [0,α]

Comparer avec l'algo : X ←α×Random.

Example2 : let D and D ′ two measurable areas in Rd such that
D ⊆D ′ et 0< vol(D)≤ vol(D ′)<+∞, suppose that you know how
to sample the uniform law in D ′.

Algo : repeat draw a random point X in D ′ until X ∈D.
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Ni Luh Dewi Sintiari
Compare to this algorithm (that we have seen before), the conditional rejection is better because, we just need "comparation", which costs less than doing multiplication
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Sampling by conditional rejection (III)

Example2 : repeat draw a random point X in D ′ until X ∈D.

Proposition

If D ⊆D ′ measurable areas in Rd où 0< vol(D)≤ vol(D ′)<∞, and
X r.v. in Rd of uniform law over D ′, then the conditional law of X
given X ∈D is the uniform law over D.

Time complexity : r.v. with geometric law of
vol(D)
vol(D ′) → choose D ′

close to D and where uniform law is simple to simulate, e.g. union
of disjoint boxes.

Uniform law over the unit disk
D = {(x ,y)|x2+y2 ≤ 1} via D ′ = [−1,1]2

Repeat X ← 2×Random−1
Y ← 2×Random−1

until X 2+Y 2 ≤ 1

0

Y

1

1

X
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Sampling by conditional rejection (IV)

Example 3 : Rejection method by von Neumann (1951)

Proposition

Let f ,g proba densities over Rd with constant c such that ∀x ∈Rd ,
f (x)≤ cg(x), and X r.v. over Rd of density g , and U real r.v. of
uniform law over [0,1], independent of X , then the conditional law
of X given �cUg(X )< f (X ) has density f .

Algo : repeat U ← Random, X ← sample for density g
until cUg(X )< f (X )

Example : f (x)= 2
π

p
1−x21[−1,1](x) (abscisse pt unif in disk)

Choose e.g. g(x)= 1
2
1[−1,1](x), and adjust small c = 4

π

Algo : repeat
{

U ← Random

X ← 2×Random−1

until (
4

π
U
1

2
< 2

π

√
1−X 2︸ ︷︷ ︸

U2<1−X 2

)
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Ni Luh Dewi Sintiari
we want to sample f, using g (that is small and we know how to sample)

Ni Luh Dewi Sintiari
X: we sample random numbers in [-1,1]

Ni Luh Dewi Sintiari
U is a rv that is only used for "stopper" of the algorithm
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Sampling by decomposition (I)

Ingredients : f proba density over Rd which can be written
f =∑

n∈Npnfn where (pn)n∈N mass over N and ∀n ∈N, fn density
over Rd .

Proposition

Let (Xn)n∈N family of r.v. over Rd with respective densities fn, and
N r.v. over N with mass (pn)n∈N where N independent from
(Xn)n∈N, then X̃ =XN has density f .

Algorithm

Draw n ∈N with proba (pn)n∈N, then draw X ∈Rd with density fn.
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Ni Luh Dewi Sintiari
the formula with sum just means that f can be decomposed into weighted sum of another probability distribution

Ni Luh Dewi Sintiari
Suppose that for each fn, we know how to sample. Then one way to generate rv with density f, is using this algorithm. 
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Sapling by decomposition (II)

Example : Uniforme law over D =⋃n
i=1Di disjoint and measurable

in ⊆Rd

Formula :
1

vol(D)
1D(x)=

n∑
i=1

vol(Di )

vol(D)

[ 1

vol(Di )
1Di

(x)
]

Algo : draw i avec proba
vol(Di )
vol(D) , then draw X at random over Di .

D D

D
D

D

D

1 2

3

4
5

6D
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Ni Luh Dewi Sintiari
an explanation: suppose that we have an area D that can be decomposed into some Di's. TO sampling, we choose one of the area, Di, then we sample a random value for X in Di
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Sampling by change of variables (I)

Reminder : let ϕ bijection (x1,x2) 7→ (y1,y2) between D ⊆R2 and
D ′ ⊆R2, with (abusive) notations y1 = y1(x1,x2),y2 = y2(x1,x2) for
ϕ, and x1 = x1(y1,y2),x2 = x2(y1,y2) for ϕ−1. Assuming the
existence of partial deriv, one de�ne the Jacobien of ϕ−1 as :

Jϕ−1(y1,y2)=
∂x1
∂y1

∂x2
∂y1

∂x1
∂y2

∂x2
∂y2

= ∂x1
∂y1

∂x2
∂y2

− ∂x1
∂y2

∂x2
∂y1

Theorem (integration & change of variables)

Let f :R2 →R integrable, ϕ :D →D ′ bijection and A⊆R2, thenÏ
A
f (x1,x2)dx1dx2 =

Ï
ϕ(A)

f (x1(y1,y2),x2(y1,y2))|Jϕ−1(y1,y2)|dy1dy2
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Sampling by change of variables (II)

Corollary

Let (X1,X2) r.v. of continuous joint distrib f , of support D ∈R2,
and ϕ bijection D →D ′, then (Y1,Y2)=ϕ((X1,X2)) has a
continous joint distrib :

fY1,Y2
(y1,y2)=

{
f (x1(y1,y2),x2(y1,y2))|Jϕ−1(y1,y2)| si (y1,y2) ∈D ′

0 sinon

Example : Box-Muller algorithm (1958){
R ←√−2 ln(Random), Θ← 2π×Random

X ←R cosΘ, Y ←R sinΘ

⇒ Θ of uniform law over [0,2π], indep from R of density

re−
r2

2 1R+(r) ⇒ X et Y are independent, of normal law N (0,1)
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Ni Luh Dewi Sintiari


Ni Luh Dewi Sintiari
explanation: 
- we draw to random values, R and theta, then we do "change of variables" (notice that here we go from polar into cartessian coordinate)

- here, if we want to get the distribution of X and Y, then we do the computation as given in the corollary
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Generators : true randomness vs pseudo-randomness

Question : how to implement Random ?

→ how to generate sequences of random numbers/bits

Pseudo-random generator

Deterministic algo generating a sequence of numbers, with some
parameters to �x, often de�ned as x(n+1)= f (x(n)) with a �seed�
x(0), predictable e.g. if knowledge of initial parameters.

�true� random generator

Sequence obtained by physical measures of phenomena with
intrinsec probabilities (e.g. quantum e�ects) or complex behaviors
(e.g. chaotic).

M1IF - ENS Lyon Performance Evaluation & Networks 22/41



Simulation
Random generators

Discrete event simulation

De�nition
Utilisation
Conception

Generators : true randomness vs pseudo-randomness

Question : how to implement Random ?
→ how to generate sequences of random numbers/bits

Pseudo-random generator

Deterministic algo generating a sequence of numbers, with some
parameters to �x, often de�ned as x(n+1)= f (x(n)) with a �seed�
x(0), predictable e.g. if knowledge of initial parameters.

�true� random generator

Sequence obtained by physical measures of phenomena with
intrinsec probabilities (e.g. quantum e�ects) or complex behaviors
(e.g. chaotic).

M1IF - ENS Lyon Performance Evaluation & Networks 22/41



Simulation
Random generators

Discrete event simulation

De�nition
Utilisation
Conception

Generators : true randomness vs pseudo-randomness

Question : how to implement Random ?
→ how to generate sequences of random numbers/bits

Pseudo-random generator

Deterministic algo generating a sequence of numbers, with some
parameters to �x, often de�ned as x(n+1)= f (x(n)) with a �seed�
x(0), predictable e.g. if knowledge of initial parameters.

�true� random generator

Sequence obtained by physical measures of phenomena with
intrinsec probabilities (e.g. quantum e�ects) or complex behaviors
(e.g. chaotic).

M1IF - ENS Lyon Performance Evaluation & Networks 22/41



Simulation
Random generators

Discrete event simulation

De�nition
Utilisation
Conception

Random sequences

Question : what is a truly random sequence of numbers ? how to
evaluate randomness of a sequence of numbers ?
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Random sequences : statistical test

De�nition (d-uniform real sequences)

A sequence (xn)n∈N with values in [0,1] is d-uniform if for any box
D =]a1,b1]×·· ·×]ad ,bd ], we have :

lim
n→+∞

1

n

n−1∑
i=0

1D((xdi ,xdi+1, . . . ,xd(i+1)−1))= (b1−a1) · · ·(bd −ad )

De�nition (d-uniform boolean sequences)

A sequence (xn)n∈N with values in {0,1} is d-uniforme if for any
pattern (ε1, . . . ,εd ) ∈ {0,1}d , we have :

lim
n→+∞

1

n

n−1∑
i=0

1(ε1,...,εd )((xdi ,xdi+1, . . . ,xd(i+1)−1))=
1

2d
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Ni Luh Dewi Sintiari
example of statistical tests to measure the uniformity of the results of our random generator

Ni Luh Dewi Sintiari
in this formula, I count all the points in the box D

Ni Luh Dewi Sintiari
statistical tests do not give the best criteria for randomness
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Random sequences : statistical tests

Exemple 1 :

not 1-uniform

0000000000000000000000 . . .

Exemple 2 :

1-uniform

0101010101010101010101 . . .

Exemple 3 :

2-uniform

0001101100011011000110 . . .

Exemple 4 : Champernowne sequence(1933)

0︸︷︷︸
0

1︸︷︷︸
1

10︸︷︷︸
2

11︸︷︷︸
3

100︸︷︷︸
4

101︸︷︷︸
5

110︸︷︷︸
6

111︸︷︷︸
7

1000︸ ︷︷ ︸
8

. . .

∞-uniform, but simple to compute → limits of d-uniformity to
de�ne randomness. Many other statistical criteria, but with the
same limits.
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Ni Luh Dewi Sintiari
because the frequency of 11...1 is 0. If we want it to be 1-uniform, the frequency should be 0

Ni Luh Dewi Sintiari
this is not 2-uniform

Ni Luh Dewi Sintiari
2-uniform because all pattern of size 2 appear in frequency which tends to 4
but it is not 3-uniform

Ni Luh Dewi Sintiari
d-uniform, for any d
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Random sequences : Kolmogorov complexity

Algorithm : function φ from {0,1}∗ to {0,1}∗, encoded with |φ|
bits.

Complexity of word x relatively to algo φ

Kφ(x)
def= |φ|+ inf{|z |, φ(z)= x}

Kolmogorov complexity of word x

K (x)
def= infφKφ(x)

De�nition (Random sequence)

A sequence (xn)n∈N ∈ {0,1}N is called random if it exists a constant
c such that ∀n≥ 1, K (x1 · · ·xn)≥ n−c .

Random = information can not be compressed, no simple rule of
generation (thus �unpredictable�)
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Ni Luh Dewi Sintiari
this is one way (also classical way) to define formally the notion of "randomness"
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Random generator : physical methods

Several ways to get random bits :

dices, coins, cards, loto, marc de café, ...

quantum phenomena : electronic noise in circuits, radioactivity
...

other physical phenomena : thermal noise, radio noise,
read/write moves of heads in hard disks ...

Selling randomness :

RANDOM.ORG : atmospheric noise measured through radio
(www.random.org)

HotBits : measures from a radioactive source
(www.fourmilab.ch/hotbits)

Intel : Intel 810, 810E, 810E2 Chipsets

The Marsaglia Random Number CDROM : 4.109 random bits
mixing several processes (i.cs.hku.hk/∼diehard)
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Pseudo-random generators : linear congruence

Linear congruence generators

• Integer parameters : m> 0, a> 0, b ≥ 0, seed 0≤ x0 <m.
• Sequence (un)n∈N ∈ [0,1]N : xn+1 = axn+b modm, un = xn/m.

B Beware of the choice of parameters :

risk of short periodic behavior

uniformity sometimes poor

risk of correlation between successive values

Examples :

RANDU (IBM 1960) : xn+1 = 65539xn mod 231, x0 odd

/

MINSTD called �Minimal Standard� (Park, Miller 1988) :
xn+1 = 16807xn mod 231−1

,
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Ni Luh Dewi Sintiari
this slide is about: be careful of the choice of the random gerators. An example that is bad is RANDU (given below). Using this random generator, at some point, we could miss some behavior (an example is demonstrated by Eric Thierry)
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Pseudo-random generators : quadratic congruence

BBS Generator (Blum, Blum, Shub 1986)

• Integer parameters : m= pq, with p,q prime and ≡ 3 mod 4, x0
prime with m.
• Sequence (un)n∈N ∈ {0,1}N : xn+1 = x2n modm, un = xn mod 2.

Remark : slow for simulation, but strong for cryptography
assuming that factorisation is hard.
Example : n= 7×19= 133

x0 = 100
parité−→ u0 = 0

x1 = 1002 mod 133= 25
parité−→ u1 = 1

x2 = 252 mod 133= 93
parité−→ u2 = 1

x3 = 932 mod 133= 4
parité−→ u3 = 0
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Di�erent types of computer simulation
for performance evaluation

Simulations to analyse the dynamics :

Equational simulation (recurrences)

Trace simulation

Discrete event simulation

Simulations as algorithms to compute some functions :

Monte Carlo simulation (a class of randomized algorithms)

Sampling using simulation : �to the future� (classical) or �from
the past� (coupling from the past)
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Discrete event simulation

De�nition

event/transition/jump : state of the system chainging at some
instant.

discrete event system (DES) : dynamics described by a
sequence of discrete events (time & space discrete or
continuous)..

discrete event simulation : simulation of a DES.

temps

état

SED
temps

état

Pas SED
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Discrete event simulation

Algorithm (DES Simulation)

1 Initialisation {create the 1st event and insert it in the
schedule}

2 Repeat until some stopping criteria is satis�ed

Move the clock to instant t of next event e ;
Update variables depending on time t ;
Execute e {action over the state and insertion/suppression of
events in the schedule} ;
Suppress e from the schedule ;

3 Ending {compute �nal statistics and produce �nal report}

Schedule : dynamic set of incoming next events
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Example : a communication channel in isolation (I)

Buffer

1
0

0
0

1

1
1

1

0
1

0
1

0111010

11101101

10 0001

Poissonian arrivals Server Output

Model of the channel (continuous time and discrete data) :

Input tra�c : packets of random length (with uniform law over
{1, . . . ,M}) with Tn arrival date of n-th packet following a
Poisson process of intensity λ, i.e. T0 = 0 and inter-arrivals
(Tn−Tn−1)n∈N∗ i.i.d. of law Exp(λ).

Server : FIFO with rate = 1 if there is work (transmission time
of a packet = its length).

Queue : storage with ∞ memory.
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Example : a communication channel in isolation (II)

Variable(s) for system states ? Simulation algo ?

System
state : X (t) = nb o f packets waiting or being transmitted at time
t (state space : N).

Two types of events (�sources�) Active source if

α : packet arrival always

β : transmission end of a packet X (t)> 0

Residual times : Yα(t) (resp. Yβ(t)) time from t to the �rst type
α event (resp. β).
Set of active sources for state i : Active(i)⊆ {α,β}.
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Ni Luh Dewi Sintiari
arrival

Ni Luh Dewi Sintiari
departure

Ni Luh Dewi Sintiari
departure only happens when there is at least one client in the system
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Example : a communication channel in isolation (III)

Algorithm (Simulation of M(λ)/D(1)/1 queue)

1 t ← 0 ; X (t)← 0 ; Yα(t)←− 1
λ ln(Random) ;

2 V ←minγ∈Active(X (t))Yγ(t); γ← argminγ∈Active(X (t))Yγ(t)

3 If γ=α, 
X (t+V )←X (t)+1;
Yα(t+V )←− 1

λ ln(Random);
If X (t+V )> 1, then Yβ(t+V )←Yβ(t)−V ;
Else Yβ(t+V )←dM ×Randome;

If γ=β,  X (t+V )←X (t)−1;
Yα(t+V )←Yα(t)−V ;
If X (t+V )> 0, Yβ(t+V )←dM ×Randome;

4 t ← t+V ; Goto 2 ;

M1IF - ENS Lyon Performance Evaluation & Networks 35/41

Ni Luh Dewi Sintiari
the event (arrival/depart) follows exponential law, so here we simulate the exponential law to generate an event

Ni Luh Dewi Sintiari
V is the time from t to the first event (arrival or depart depending on the minimum value between Y_\alpha(t) and Y_\beta(t))

Ni Luh Dewi Sintiari
arrival

Ni Luh Dewi Sintiari
departure

Ni Luh Dewi Sintiari
t is the current time

Ni Luh Dewi Sintiari
Y_\beta(t+V) : departure time
M x Random: service_time
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Example : a communication channel in isolation (III)

t

t

t

X(t)

α

Y (t)
β

Y (t)

data

S S S S S S S
VV V V V V1 2 3 4 5 6

0 1 4 5 62 3

� Vn ∈R+, n≥ 1, consecutive values of V : delay between each
state transition (�jump�) → Sn =∑n

i=1Vi date of n-th jump.
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Matthes scheme : ingredients

E : countable set of system states, X(t) state at time t.

S : set of sources (inducing state transitions).

State x ∈E → active sources : Active(x)⊆ S .

Source α ∈ S → Yα(t) delay from t to next event α.
Computed from :

Fα cumulative distrib fct for the �size� of event α.

C (α,x) �decrease� speed of Yα(t) when state is x .

Jump : when Yα(t) reaches 0, α occurs and system jumps
from current state x to new state y with proba p(α,x ,y).
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Matthes scheme : simulation algo

Algorithm (Simulation �à la Matthes�)

1 t ← 0 ; X (t)← x0 ; Yα(t)← y0,α, ∀α ∈Active(x0) ;
2 V ← min

α∈Active(X (t))

Yα(t)
C(α,X (t)) ; α← argmin

α∈Active(X (t))

Yα(t)
C(α,X (t))

3 Draw x with law (p(α,X (t),e))e∈E ;
X (t+V )← x ;
Yα(t+V )←Yα(t)−V ×C (α,X (t)),

∀α ∈Active(x)∩Active(X (t))\ {α} ;
Yα(t+V )← F−1

α (Random), ∀α ∈Active(x)\Active(X (t)) ;
Yα(t+V )← F−1

α
(Random), si α ∈Active(x) ;

4 t ← t+V ; Goto 2 ;
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Quantify/qualify transitory/asymptotic behaviour

Stationarity / Stability :

For deterministic system (Fα = 1[Tα,+∞[), si E est ∞, Does
X (t) remain if a �nite subset of E when t →+∞ ?

For probabilistic system (Fα random), which conditions make
X (t) tends to a limit r.v. X∞ ?

Characterization of processes :

For deterministic system, X (t) becomes periodic ?

For probabilistic system, which conditions make X (t)
markovian ? and make this Markov chain positive recurrent
(probabilistic analog of periodicity) ?

Characterization of laws : what are the laws of X (t) (transitory
law) and X∞ (asymptotic/stationary law) ?
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Simulation in pratice

Use of a simulator → estimate behaviour/laws via observations and
statistics

B Choice of initial conditions ?

B Stopping criteria for each simulation ?

B Stopping criteria over number of simulation runs ?

B Compromise between simulator sharpness / simulation
complexity.

to be continued ...
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